	CTN/RPI-R-2013/123
	[image: image1.jpg]

[image: image2.png]

	REACTOR
	Campus Tecnológico e Nuclear, Instituto Superior Técnico

Open source DLL for

the IBA Data Format IDF
version 1.02
N. P. Barradas

Sacavém, 13 de Fevereiro de 2013
Campus Tecnológico e Nuclear
Unidade de Reactores e Segurança Nuclear

Instituto Superior Técnico

Universidade Técnica de Lisboa
Estrada Nacional 10, 2686-953 Sacavém
CONTENTS
41
The IDF open source package

41.1
The universal IBA interchange data format IDF concept

41.2
Original publication and current documentation

41.3
Open source code and DLL

41.4
Restrictions

42
General concepts

42.1
Distribution and usage

42.2
Common sequence of operations - read

52.3
Common sequence of operations - write

52.4
Implementation of the IDF data structure

62.5
Auxiliary array dimension variables

62.6
Array conventions

63
Routines available to the user

63.1
initialise_idf

63.2
validate_file_idf

73.3
get_nsamples_idf

73.4
read_file_idf

73.5
write_file_idf

73.6
allocate_idf_tags

73.7
allocate_secondary_variables_idf

83.8
deallocate_idf_all

83.9
deallocate_idf_tags

83.10
deallocate_auxiliary_variables_idf

83.11
get_auxiliary_variables_idf

84
Auxiliary dimension variables

94.1
Primary auxiliary dimension variables

94.2
Secondary auxiliary dimension variables

1 The IDF open source package
1.1 The universal IBA interchange data format IDF concept

The universal IBA interchange data format IDF was first presented at the IBA 2009 conference. It support all forms of IBA data in a well defined simple format permitting easy exchange between sites and analysis programs. Its main characteristics are: 1) It can be read and understood by inspection of the file, i.e. it is ASCII. 2) It is flexible enough to cater to all IBA data needs. 3) It is easily extendable.

This was implemented with XML, and the IDF is in fact an XML language defined in an XML schema.

1.2 Original publication and current documentation

The first original publication on the IDF is co-authored by N.P. Barradas, M. Mayer, and M. Thompson. It is published in the Proc. of the 20th International Conference of Ion Beam Analysis [
]. This is the reference that should be cited whenever referring to the IDF.

The current version is v1.02, released 05 February 2013. The definition, as embodied in the XML schema, together with full documentation [
], can be found in the URL http://idf.schemas.itn.pt/, which defines the IDF.
1.3 Open source code and DLL
The IDF as such is a set of specifications that altogether define a data format. Originally no actual implementation was provided, and each code developer was left to develop their own read and write routines to implement the IDF. The purpose of this report is to provide open source code to read IDF data files, as well as a DLL that can be used by code developers. A strong familiarity with the IDF documentation [2] is required. No atempt is made to explain what each IDF tag is. Both the source code and the DLL are available in the IDF URL [2].
1.4 Restrictions
The <users> and <notes> tags are only implemented as children of the <idf> and <sample> tags.
2 General concepts

2.1 Distribution and usage

The IDF read package is distributed bia the IDF URL [2]. It contains the Fortran source code, the IDF_DLL.dll file, and the file IDF_DLL.lib that must be included in the build of the user's project. The LIB file contains information that the user's program needs to work with the DLL.
To access the IDF variables, the module IDFCOM must be included in the calling routine. In Fortran, this is made with the declaration statement in the calling routine, immediately after the subroutine or program statement and before specification statements declaring any variables:

use IDFCOM
The routines required also need to be imported in the calling project. In Fortran this is made with the line

!DEC$ ATTRIBUTES DLLIMPORT :: initialise_idf,validate_file_idf,get_nsamples_idf,read_file_idf,write_file_idf
There are other routines that the user may need to import, as per this documentation.

The DLL was created with Intel® Visual Fortran in the Microsoft® Visual Studio environment. The user should be aware of Fortran variable, array, and calling conventions. Specific help on using a Fortran DLL from other aplications can be found in the Intel documentation [
].
2.2 Common sequence of operations - read
The IDF read package as implemented in the DLL contains several routines available to the user. Normally a sequence of routines need to be called to read an IDF file. A common sequence of operations is the following:

-
Call the routine initialise_idf, which initialises internal variables. None of the variables initialised is an actual IDF tag.

-
Call the routine validate_file_idf, which validates the IDF file given as input. If the file is a valid IDF file, the variable idf_ok is set to .TRUE. on return. If the file is not a valid IDF file, the variable idf_ok is set to .FALSE. on return and an error message is in variable idf_error, otherwise it is an empty string. More generally, this is standard behaviour in the package: any completion of a routine leads to variables idf_ok and idf_error being set accordingly.

-
Call the routine get_nsamples_idf, which returns the number of samples (i.e. the number of tags <sample>) contained in the IDF file.

-
Call the routine read_file_idf for one of the samples, which reads the IDF file for that sample. It creates all the variables required for that sample, and fills them with the values given in the IDF file.

-
Call the routine deallocate_idf_all, which erases from memory all variables created by the different IDF routines, both IDF tags and internal variables. This is useful to free up memory when there is no more need for IDF.

The user can also:

-
Call the routine deallocate_idf_tags, which erases from memory only the variables that correspond to IDF tags. This is useful when the user wishes to change the IDF structure that was read (for instance, by adding a simulation for the data previously read). To change the IDF data structure, first the existing data structure must be erased from memory, then the new one must be created (see next paragraph).

-
Call the routine allocate_idf_tags, which creates an IDF structure corresponding to the dimensions given in the input.

2.3 Common sequence of operations - write

Reading an IDF file is easy because the IDF read package takes care of everything, including discovering the dimension of the problem and allocating all the variables necessary. To write an IDF file, that is the user's job, who must define and allocate all the variables and fill them with the values to be written. To assist at least part of this process, the IDF write package as implemented in the DLL contains several routines available to the user. Normally a sequence of routines need to be called to write an IDF file. A common sequence of operations is the following:

-
Call the routine initialise_idf, which initialises internal variables. None of the variables initialised is an actual IDF tag. This needs to be done only once.
-
Define the primary auxiliary problem dimension variables, given in Table I. This means, give the required values to these variables.
-
Call the routine allocate_secondary_variables_idf to allocate the secondary auxiliary problem dimension variables, given in Table II.
-
Define the secondary auxiliary problem dimension variables, given in Table II. This means, give the required values to these variables.

-
Call the routine allocate_idf_tags, which creates an IDF structure corresponding to the dimensions given in the input.

-
Fill the IDF data structure with values.
-
In the previous step, it is advised to also give correct values to the IDF dimension tags. If this is not done, then the user must call the routine get_auxiliary_variables_idf, which takes care of that.

-
Call the routine write_file_idf, which writes the IDF file.

-
Call the routine deallocate_idf_all, which erases from memory all variables created by the different IDF routines, both IDF tags and internal variables. This is useful to free up memory when there is no more need for IDF.

Occasionally the user already has an existing IDF data structure, allocated and filled with values. This is the case e.g. if the user has read an IDF file, updated or changed it, and now wishes to write the changed file. In that case, the user does not need to define and allocate the auxiliary problem dimension variable given in Tables I and II. The user needs only to call the routine get_auxiliary_variables_idf (nto necessary if all the IDF dimension tags are properly set)., then call the routine write_idf, which writes the IDF file.

2.4 Implementation of the IDF data structure

The routine read_file_idf returns the IDF data structure, as a single variable called sample. This is a data structure that includes all the IDF tags that were given in the IDF file for that sample. It reproduces exactly the IDF structure as given in the IDF documentation [2]. For instance, consider this fragment of an IDF file:
<sample>

<elementsandmolecules>

<elements>

<element>

<name> Si </name>

<density units="1e22at/cm3"> 5 </density>

</element>

<element>

<name> O </name>

</element>

</elements>

</elementsandmolecules>
</sample>
The element names will be located in these derived variables:

sample%elementsandmolecules%elements%element(1)%name = 'Si'

sample%elementsandmolecules%elements%element(2)%name = 'O'

And the density of Si will be located in:

sample%elementsandmolecules%elements%element(1)%density%value = 5.

sample%elementsandmolecules%elements%element(1)%density%units = '1e22at/cm3'

2.5 Auxiliary array dimension variables

Clearly, many values are arrays, that must have a certain dimension. In the example above,

sample%elementsandmolecules%elements%element(:)
is one such array. When reading the IDF file, the routine will allocate all the necessary arrays with the dimension that is needed. This dimension sometimes is given as an IDF variable. In the example above, the user can specify the number of elements with the variable:

sample%elementsandmolecules%elements%nelements
However, in this (case and other) this is not mandatory, because this tag is redundant with the content of the elements tag. In many other cases, the dimension of arrays is not an IDF tag at all. Therefore, in all cases where variables are arrays of dimension not known a priori before reading the IDF file, integer variables that contain the dimension of each array are created. These are not IDF variables as defined in the IDF XML schema. However, they are very convenient and when writing an IDF file they are essential. See section 4 below.
2.6 Array conventions
All array conventions (order, starting index, and anything else) follow standard Fortran.
3 Routines available to the user

All routines use the module IDFCOM, which contains the definitions of all variables. To access the variables, this module must be included in the calling routine. In FORTRAN, this is made with the declaration statement in the calling routine, immediately after the subroutine or program statement and before specification statements declaring any variables:

use IDFCOM
Note that the IDF package contains many more routines, but they are not made available via the DLL provided. If the user wants to use the other routines, this can be made either by changing the source code to export the other required routines then rebuilding the DLL, or by including the source code in the user's project.

All routines set the variables idf_ok and idf_error. idf_ok is a logical variable, with value .TRUE. on correct completion. idf_error is a character variable of maximum length 300 characters. It is an empty string on correct completion, otherwise it provides an error message.
3.1 initialise_idf

Purpose: It defines the IDF tags, as well as IDF quantities and their units.

Usage: call initialise_idf
Arguments: none.

Outputs useful to the user: idf_ok and idf_error.

This routine must be called before any use of the IDF routines. It needs to be called only once, unless the routine deallocate_idf_all is called.

3.2 validate_file_idf

Purpose: It validates a file against the IDF definition.

Usage: call validate_file_idf(idf_file)
Arguments: The name of the file (idf_file above), which is a string of any length that may include a path.

Outputs useful to the user: idf_ok and idf_error.

Strictly speaking, it is not necessary to run the routine before reading the file, but any problems will be detected here and reported in idf_error, in a clearer way than what the read routine can do.

3.3 get_nsamples_idf
Purpose: It determines how many are tags sample are present in the IDF file.

Usage: call get_nsamples_idf(idf_file)

Arguments: The name of the file (idf_file above), which is a string of any length that may include a path.

Outputs useful to the user: The main output is the integer variable idf_nsamples (defined in the module IDFCOM). idf_ok and idf_error are also set.
The read routine only reads one sample at a time. Therefore it is convenient to know beforehand how many samples are included in a given IDF file, so they can be read one by one.
3.4 read_file_idf
Purpose: It determines how many are tags sample are present in the IDF file.

Usage: call read_file_idf(idf_file,i,verbose)

Arguments: The name of the file (idf_file above), which is a string of any length that may include a path; followed by an integer, which is the number of the sample to be read; followed by a logical variable, which if set .TRUE. makes the DLL output on screen the variables used to allocate the IDF variables (mostly auxiliary array dimenson variables).
Outputs useful to the user: The entire IDF data structure for the given sample is created and returned as sample (defined in the module IDFCOM), containing all the IDF tags included in the IDF file for that sample. All the auxiliary array dimension variables, described below, are also created. idf_ok and idf_error are also set.
This is the routine that does the real work of reading the IDF file. The output is one single variable, which can be practically empty (if the IDF file had very little content for that sample), or it can be a huge data structure with many experimental spectra and many simulations (there is no a priori limit to the number of spectra or simulations).
3.5 write_file_idf
Purpose: It determines how many are tags sample are present in the IDF file.

Usage: call write_file_idf(u,idf_file)

Arguments: The first argument is an integer, it is the unit specifier fo the file to be created, so it is used only during the writing of the file, it is an input in order to avoid conflicts with other files eventually opened by other processess. The second output is the name of the file (idf_file above), which is a string of any length that may include a path.
This is the routine that does the real work of writing the IDF file.
3.6 allocate_idf_tags
Purpose: It allocates all the IDF tags required for an IDF file. This is the actual data structure that will contain the data.
Usage: call allocate_idf_tags
Arguments: none.
Outputs useful to the user: The main output is the creation, with the correct dimensions, of the (empty) data structures attributes, usersnotes and sample (defined in the module IDFCOM). idf_ok and idf_error are also set.
The auxiliary problem dimension variable given in Tables I and II must be defined and set beforehand, since allocation is based on these variables.

3.7 allocate_secondary_variables_idf
Purpose: It allocates the secondary auxiliary problem dimension variables, given in Table II.
Usage: call allocate_secondary_variables_idf
Arguments: none.
Outputs useful to the user: The main output is the creation, with the correct dimensions, of the (empty) secondary auxiliary problem dimension variables given in Table II. idf_ok and idf_error are also set.
The primary auxiliary problem dimension variables given in Table I must be defined and set beforehand, since allocation is based on these variables.

3.8 deallocate_idf_all
Purpose: It frees the memory, deallocating all allocatable variables created by the IDF routines.

Usage: call deallocate_idf_all
Arguments: none.
Outputs useful to the user: none. idf_ok and idf_error are set as .TRUE. and empty string, respectively.
3.9 deallocate_idf_tags
Purpose: It frees the memory, deallocating the sample variable only.

Usage: call deallocate_idf_tags
Arguments: none.
Outputs useful to the user: none. idf_ok and idf_error are set as .TRUE. and empty string, respectively.
Suppose an IDF file that contains only raw data and the experimental conditions for one sample. One use can be ro read it, perform data analysis, then write the results of the analysis, including the data, the experimental conditions, plus the simulations made. This requires adding variables to the original sample data structure. However, the IDF routines provided do not provide for this to be done directly. The user must first deallocate the sample data structure, then change the dimension of the problem (by setting the auxiliary array dimension variables that correspond to the process tag), then allocate the sample data structure again. Note that in this procedure, the content of the sample data structure that had been read is lost, and must be filled in again. This can be done either by the user, or by simply reading the original IDF file again. The simulations must of course be copied into the correpsonding process tags by the user.

Alternatively, the user can allocate the required variables of the process tag without deallocating the entire sample data structure. No facility is provided for this and the user will need to program it in their own codes.
3.10 deallocate_auxiliary_variables_idf
Purpose: It deallocates the secondary auxiliary problem dimension variables, given in Table II.
Usage: call deallocate_basic_variables_idf

Arguments: none.
Outputs useful to the user: none. idf_ok and idf_error are set as .TRUE. and empty string, respectively.
3.11 get_auxiliary_variables_idf
Purpose: From an existing IDF structure, it derives the primary and secondary auxiliary dimension variables, given in Tables I and II.
Usage: call get_auxiliary_variables_idf

Arguments: none.
Outputs useful to the user: All the primary and secondary auxiliary dimension variables that correspond to the IDF data structure currently I nmemory. idf_ok and idf_error are set as .TRUE. and empty string, respectively.
4 Auxiliary dimension variables
These are an essential part of the IDF DLL. Particularly when writing an IDF file, understanding of this section is essential. Consider IDF variables such as:
sample%elementsandmolecules%elements%element(1)%name
or even
sample%spectra%spectrum(3)%data%complexdata%dataentries%dataentry(253)%dataitem(4)
The second case corresponds to the third spectrum of a given sample, given as complexdata. It is dataentry 253 (which could correspond e.g. to channel 253); and it is the fourth dataitem of that channel (suppose that each "channel" has several quantities measured, such as the pulse height of two timing foils plus final energy).

When reading an IDF file, the routines proveded here automatically detect the required dimensions, and allocate the IDF data structure based on the dimensions determined. For instance, in the second example above, the following auxiliary variables are created (and made available to the user):

nspectra_idf

ndatapoints_idf(1:nspectra_idf)

datadimensionx_idf(1:nspectra_idf)

datadimensiony_idf(1:nspectra_idf)
Where nspectra_idf is the number of spectra for the current sample; ndatapoints_idf is the number of data points (e.g. channels), i.e. the number of data entries; and datadimensionx_idf and datadimensiony_idf are the x and y data dimensions in a complexdata data structure, so each data entry has datadimensionx_idf+ datadimensiony_idf data items.

When writing an IDF file, however, before filing the IDF data structures with values, the actual IDF data structures must be created. They are created and allocated based on the exact same auxiliary dimension variables, and these must be defined by the user beforehand.

There are two different categories of auxiliary dimension variables. The first category is the primary auxiliary dimension variables, which are all scalar variables, that contain for instance how many spectra there are in the file to be written, or how many elements are included in the sample definition. These are needed both to define the secondary auxiliary dimension variables and to allocate the IDF data structure.

The second category is the secondary auxiliary dimension variables, which are array variables, that contain for instance the number of data points in the ith spectrum. These are needed to allocate the IDF data structure.

4.1 Primary auxiliary dimension variables
These variables are required to allocate the IDF datra structure, and also to define the secondary auxiliary dimension variables defined in the next section. When an IDF file is read, they are automatically created. However, they must be defined by the user before reading an IDF file.
Variables are not set by default. This is also true for these auxiliary variables. To write an IDF file, variables not used must be set to zero. If, for instance, the layeredstructure description does not use molecules, the user must set idfnmolecules to zero. When reading an IDF file, this is done automatically by the DLL.

The second column should be read as"number of …". This table is best read in conjunction with the IDF documentation [2].

	idfnspectra
	experimental spectra in the sample

	idfnelements
	elements in the layeredstructure description

	idfnmolecules
	molecules in the layeredstructure description

	idfnfoillayers
	maximum number of layers in either beamfoil, stoppingfoil, entrancewindow, detectorlayer, tofstartfoil, or tofstopfoil

	idfndetectorefficiency
	detectorefficiency given. The detector efficiency can be different for each detected species

Table I. Primary auxiliary dimension variables.
4.2 Secondary auxiliary dimension variables
These variables are required to allocate the IDF data structure. Most of them require that the primary auxiliary dimension variables defined in the previous section are set. When an IDF file is read, they are automatically created. However, they must be defined by the user before reading an IDF file. Variables are not set by default. This is also true for these auxiliary variables. To write an IDF file, variables not used must be set to zero. When reading an IDF file, this is done automatically by the DLL.
The first column is the name of the auxiliary variable, together with its dimensions if it is an array. Arrays of rank 1, i.e. one-dimensional rays, are given as e.g.

npbp_idf

(1:npbp_element_idf)
Where the first line is the name of the variable, and the second gives the dimensions of the array.

For arrays with rank higher than 1 (that is, multidimensional arrays), where one dimension depends on the previous dimensions, the nomenclature is, for instance
nlayerspbp_idf

(i 1:npbp_element_idf,

1:npbp_idf(i))
each line contains one dimension. In this case, the second dimension is different for each element i of the first dimension.

The second column should be read as"number of …". This table is best read in conjunction with the IDF documentation [2].

	nlayers_idf
	layers in the layeredstructure description

	npbp_element_idf
	elements that have a point by point profile in pointbypointstructure. (i.e. number of pbpelement entries)

	npbp_idf
(1:npbp_element_idf)
	Point by point profiles given for each pbpelement

	nlayerspbp_idf

(i 1:npbp_element_idf,

1:npbp_idf(i))
	layers in each point by point profile (pbp) given for each pbpelement

	nslitsbeforesample_idf

(1:nspectra_idf)
	slits before the sample given for each spectrum

	nslitsaftersample_idf

(1:nspectra_idf)
	slits after the sample given for each spectrum

	nbeamchargestate_idf
	beam charge states in beam

	nbeamfoillayers_idf

(1:nspectra_idf)
	beam foils (located between the beam and the sample) given for each spectrum

	nbeamfoilels_idf

(i 1:nspectra_idf,

1:nbeamfoillayers_idf(i))
	elements in each layer of the beamfoil given for each spectrum

	nstoppingfoillayers_idf

(1:nspectra_idf)
	layers in a stoppingfoil (between sample and detector) given for each spectrum

	nstoppingfoilels_idf

(i 1:nspectra_idf,

1:nstoppingfoilels_idf(i))
	elements in each layer of the stoppingfoil given for each spectrum

	ndeadlayer_idf

(1:nspectra_idf)
	1 if there is a deadlayer, 0 otherwise. In fact, it is the number of layers in the deadlayer, currently limited to 1 maximum

	ndeadlayerels_idf

(1:nspectra_idf)
	elements in the deadlayer of the detector given for each spectrum

	nentrancewindow_idf

(1:nspectra_idf)
	layers in the entrancewindow of the detector given for each spectrum

	nentrancewindowels_idf

(i 1:nspectra_idf,

1:nentrancewindow_idf(i))
	elements in each layer of the entrancewindow given for each spectrum

	ndetectorlayers_idf

(1:nspectra_idf)
	layers in the detector given for each spectrum

	ndetectorlayersels_idf

(i 1:nspectra_idf,

1:ndetectorlayers_idf(i))
	elements in each layer in the detector given for each spectrum

	ntofstartfoil_idf

(1:nspectra_idf)
	layers in the startfoil of the tof in the detector given for each spectrum

	ntofstartfoilels_idf

(i 1:nspectra_idf,

1:ntofstartfoil_idf(i))
	elements in each layer in the startfoil of the tof in the detector given for each spectrum

	ntofstopfoil_idf

(1:nspectra_idf)
	layers in the stoptfoil of the tof in the detector given for each spectrum

	ntofstopfoilels_idf

(i 1:nspectra_idf,

1:ntofstopfoil_idf(i))
	elements in each layer in the stopfoil of the tof in the detector given for each spectrum

	ndetectorefficiency_idf

(1:nspectra_idf)
	 detectorefficiencies given for each spectrum

	ndetectorefficiencyentries_idf

(i 1:nspectra_idf,

1:ndetectorefficiency_idf(i))
	entries in each detectorefficiency given for each spectrum

	ndetectorresolution_idf

(1:nspectra_idf)
	detectorresolutions given for each spectrum

	nresolutionparameter_idf

(i 1:nspectra_idf,

1:ndetectorresolution_idf(i))
	parameters in each detectorresolution given for each spectrum

	nenergycalibration_idf

(1:nspectra_idf)
	energycalibrations given for each spectrum

	ncalibrationparameter_idf

(i 1:nspectra_idf,

1:nenergycalibration_idf(i))
	parameters in each energycalibration given for each spectrum

	nreaction_idf

(1:nspectra_idf)
	reactions given for each spectrum

	ndatapoints_idf

(1:nspectra_idf)
	data points in each spectrum

	ndatatimestamp_idf

(1:nspectra_idf)
	1/0 if there is/not timestamp in complexdata in data in each spectrum

	ndataline_idf

(1:nspectra_idf)
	1/0 if there is/not line in complexdata in data in each spectrum

	datadimensionx_idf

(1:nspectra_idf)
	x dimensions in each spectrum given as complexdata. Set to 0 (zero) for other data types

	datadimensiony_idf

(1:nspectra_idf)
	y dimensions in each spectrum given as complexdata. Set to 0 (zero) for other data types

	nsimulation_idf

(1:nspectra_idf)
	simulations given for each spectrum

	nsimpoints_idf

(i 1:nspectra_idf

1:nsimulation_idf(i))
	points in each simulation given for each spectrum

	simdimensionx_idf

(i 1:nspectra_idf

1:nsimulation_idf(i))
	x dimensions in each simulation given for each spectrum

	simdimensiony_idf

(i 1:nspectra_idf

1:nsimulation_idf(i))
	y dimensions in each simulation given for each spectrum

	ncrosssection_idf

(i 1:nspectra_idf,

1:nsimulation_idf(i))
	cross sections given in one simulation given for each spectrum

	ncrosssectionpoints_idf

(i 1:nspectra_idf,

j 1:nsimulation_idf(i),

1:ncrosssection_idf(i,j))
	points in one crosssection given in one simulation given for each spectrum

	nstoppingpower_idf

(i 1:nspectra_idf,

1:nsimulation_idf(i))
	stopping powers given in one simulation given for each spectrum

	nstoppingpowerpoints_idf

(i 1:nspectra_idf,

j 1:nsimulation_idf(i),

1:nstoppingpower_idf(i,j))
	points in one stoppingpower given in one simulation given for each spectrum

	nenergyspread_idf

(i 1:nspectra_idf,

1:nsimulation_idf(i))
	energy spreads given in one simulation given for each spectrum

	nenergyspreadpoints_idf

(i 1:nspectra_idf,

j 1:nsimulation_idf(i),

1:nenergyspread_idf(i,j))
	points in one energyspread given in one simulation given for each spectrum

Table II. Secondary auxiliary dimension variables.
5 Test routine and data file

The test routine ndf_read_IDF_test is provided. It reads an IDF data file, then deallocates the auxiliary dimension variables, then allcoates them again, then writes an IDF file for one of the samples contained in the original IDF file read, as chosen by the user..

5.1 ndf_read_IDF_test
Purpose: Test the read and write routines provided in the IDF DLL package.
Usage: call ndf_read_IDF_test(idf_file_in,idf_file_out,u_out,verbose)
Arguments: idf_file_in is the input IDF file. idf_file_out is the output IDF file. u_out is the unit specifier of the file to be created. verbose is a logical variable .true. or .false. if output is to be written on screen or not.
5.2 xaxa.idf
This is a test IDF file, with garbage contents. It contains two samples. Samnple 1 tests almost all of the IDF definition. It can be used as the input file idf_file_in with the test routine ndf_read_IDF_test. In fact, it was used to debug the IDF package.
References

[�]	A new ion beam analysis data format, N. P. Barradas, M. Mayer, M. Thompson, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 1824–1828

[�]	The IBA Data Format IDF, version 1.0, N. P. Barradas, ITN/RPI-R-2009/110, and updates as given in http://idf.schemas.itn.pt/.

[�]	Using Intel® Visual Fortran to Create and Build Windows*-Based Applications, Document Number: 324197-001US: http://software.intel.com/sites/products/documentation/hpc/composerxe/en-us/fortran/win/pdf/Creating_Fortran_Win_Apps.pdf

13

